Заключительный комментарий
Глава 1 Глава 2
В настоящее время исследования, подобные изложенным в этой книге, представляют большой интерес. С середины 1950-х годов постоянно появляются новые концепции. Много замечательных идей, основанных на модели Е — V, пришло к нам из академического сообщества. Среди предложенных концепций есть, например, модель Е — S, где риск измеряется не дисперсией, а полудисперсией.
Полудисперсия — это дисперсия некоторого уровня прибыли, который может быть ожидаемой прибылью, нулевой прибылью или любым другим фиксированным уровнем прибыли. Когда заданный уровень прибьши равен ожидаемой прибыли и распределение прибылей симметрично (без асимметрии), эффективная граница Е — S совпадает с эффективной границей Е — V.
Существуют модели портфелей, использующие вместо дисперсии прибылей другие способы выражения риска, а также более высокие моменты распределения прибылей. Большой интерес в этом отношении представляют методы стохастического доминирования, которые учитывают все распределения прибылей и могут считаться предельным случаем многомерного анализа портфеля, когда число используемых моментов стремится к бесконечности. Подобный подход может быть особенно полезен в том случае, когда дисперсия прибылей бесконечна или не определена.
И снова повторюсь — я не академик — это ни хвастовство, ни извинение, я такой же академик, как чревовещатель или телевизионный проповедник. Академикам необходима модель для объяснения того, как работают рынки, мне же не так важно, как они работают. Многие представители академического сообщества утверждают, что гипотеза об эффективной границе неверна, так как не существует понятия «рациональный инвестор». Сторонники такого подхода утверждают, что люди не ведут себя рационально, поэтому традиционные модели портфелей, такие как теория Е — V (и ее варианты) и модель оценки доходности финансовых активов, являются неудовлетворительными моделями работы рынков. Я согласен, что инвесторы не всегда ведут себя рационально, но это не означает, что нам следует вести себя подобным образом. Нельзя утверждать, что мы не можем получить выгоду из рационального поведения. Когда дисперсия прибылей конечна, мы можем получить преимущество, находясь на эффективной границе.
В последнее время традиционные модели портфелей подвергаются серьезной критике, поскольку считается, что ценовые изменения лучше всего описываются распределением Парето с бесконечной (или неопределенной) дисперсией. Однако многие исследования доказывают, что рынки в последние годы стали ближе к нормальному распределению (т.е. к ограниченной дисперсии и независимости результатов), на чем и основаны критикуемые модели портфелей. В моделях портфелей используется распределение прибылей, а не распределение изменений цен. Несмотря на то что распределение прибылей является трансформированным распределением изменений цены (в результате закрытия проигрышных сделок и максимально долгого удержания выигрышных позиций), эти распределения, как правило, отличаются. Распределение прибылей не обязательно относится к классу распределений Парето, поэтому в главе 4 мы моделировали распределение P&L с помощью регулируемого распределения. Более того, существуют производные инструменты, например, опционы, которые имеют ограниченную полудисперсию или дисперсию. Например вертикальный опционный спред в дебете гарантирует ограниченную дисперсию прибылей. Я не пытаюсь оспаривать разумную критику современных моделей портфелей. Модели следует использовать при условии, что мы осознаем их недостатки. Разумеется, необходимы более совершенные модели портфелей. Я не заявляю, что современные модели адекватны, а говорю лишь о том, что входные данные для моделей портфелей, нынешних или будущих, должны основываться на торговле одной единицей на оптимальном уровне — или на том уровне, который, как мы полагаем, будет оптимальным. Например, если мы применяем теорию Е — V (модель Марковица), входными данными являются ожидаемая прибыль, дисперсия прибылей и корреляции прибылей между рыночными системами. Входные данные должны определяться на основе торговли одной единицей по каждой рыночной системе на уровне оптимального f. Модели портфелей, отличные от Е — V, могут потребовать других входных параметров, но и их для каждой рыночной системы все равно следует рассчитывать на основе торговли одной единицей на уровне оптимального f. Модели портфелей являются лишь одной составляющей управления капиталом, и эта книга не может ответить на все вопросы. Кроме того, постоянно появляются новые, усовершенствованные модели. Скорее всего, мы никогда не получим абсолютно совершенной модели, но это только будет стимулировать дальнейшие поиски.