мы обнаружили, что приемлемой моделью,
Глава 1 Глава 2 Допустим, мы обнаружили, что приемлемой моделью, описывающей распределение логарифмов изменений цены товара, опционы на который мы хотим купить, является распределение Стьюдента. Для определения оптимального числа степеней свободы распределения Стьюдента мы использовали тест К-С и пришли к выводу, что наилучшее значение равно 5. Допустим, мы хотим определить справедливую цену колл-опциона на 911104 (дата истечения срока опциона — 911220). Цена базового инструмента равна 100, цена исполнения опциона также равна 100. Предположим, годовая волатильность составляет 20%, безрисковая ставка 5% и год равен 260,8875 дням (мы не учитываем праздники, которые выпадают на рабочий день, например День Благодарения в США). Далее допустим, что минимальный тик по этому предполагаемому товару равен 0,10. Используя уравнения (5.01), (5.02) и (5.07) для переменной Н, мы найдем, что справедливая цена равна 2,861 как для колл-опциона, так и для пут-опциона с ценой исполнения 100. Таким образом, эти цены опционов являются справедливыми ценами в соответствии с моделью товарных опционов Блэка, которая допускает логарифмически нормальное распределение цен. Если мы будем использовать уравнение (5.11), то должны сначала рассчитать значения pg. Их можно получить из фрагмента программы, написанной на языке Бейсик и представленной в приложении В. Отметьте, что необходимо знать стандартное значение, т.е. переменную Z, и число степеней свободы, т.е. переменную DEGFDM. Прежде чем мы обратимся к этой программе, преобразуем цену i в стандартное значение по следующей формуле:


